Hemorrhagic fever with renal syndrome (HFRS) occurs throughout Eurasia with considerable morbidity and mortality. Currently, the absence of specific treatments or effective antiviral drugs for hantavirus infection makes developing safe and effective vaccines a high priority. Here, we report the development of three novel nucleic acid vaccine candidates, mRNA, naked DNA, and DNA encapsulated in lipid nanoparticles, encoding the glycoproteins of the Hantaan virus (HTNV). To comprehensively evaluate the potential of candidate HTNV nucleic acid vaccines in preventing HFRS, we focus on evaluating their immunogenicity and efficacy in mice and comparing them with an inactivated vaccine as the benchmark. Our findings reveal that all candidate vaccines activated instant and sustained immune responses, offering comparable in vivo protective efficacy to the inactivated vaccines. Notably, compared to the inactivated vaccine, mRNA vaccine induced stronger virus-specific T-helper 1 cell immune response, while DNA-LNP elicited higher levels of neutralizing antibodies in mice. These results mark a significant step in developing nucleic acid vaccines for HTNV, suggesting that sequential immunization with DNA and mRNA vaccines could further amplify the advantages of nucleic acid vaccines.