C-type lectins (CTLs), a group of pattern recognition receptors, are involved in regulating the immune response of insects and could be used as potential targets for pest control. However, information about roles of CTLs in the innate immunity of Tribolium castaneum, a serious, worldwide pest that damages stored grain products, is relatively scarce. Here, a CTL with dual carbohydrate recognition domains (CRDs) containing a highly conserved WHD (Trp53 -His54 -Asp55 ) motif was identified in T. castaneum and named as TcCTL3. Spatiotemporal analysis showed that TcCTL3 was highly expressed in all developmental stages except early eggs, and mainly distributed in central nervous system and hemolymph. The transcript levels of TcCTL3 were significantly increased after lipopolysaccharide (LPS) and peptidoglycan (PGN) stimulation. Recombinant TcCTL3 was able to bind directly to LPS, PGN and all tested bacteria and induce a broad spectrum of microbial agglutination in the presence of Ca2+ . The binding was shown mainly through CRD1 domain of TcCTL3. When TcCTL3 was knocked down by RNA interference, expression of nine antimicrobial peptides (AMPs) (attacin1, attacin2, attacin3, defensins1, defensins2, coleoptericin1, coleoptericin2, cecropins2 and cecropins3) and four transcription factors (TFs) (dif1, dif2, relish and jnk) were significantly decreased under LPS and PGN stimulation, leading to increased mortality of T. castaneum when infected with Gram-positive Staphylococcus aureus or Gram-negative Escherichia coli infection. TcCTL3 could mediate the immune response in T. castaneum via the pattern recognition, agglutination and AMP expression. These findings indicate a potential mechanism of TcCTL3 in resisting bacteria and provide an alternative molecular target for pest control. © 2020 Society of Chemical Industry.
Read full abstract