Alzheimer's disease (AD) is the most common neurodegenerative disease in older people, characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of aggregated of hyperphosphorylated tau protein, which normally helps stabilize microtubules in neurons. Nowadays, artemisinin (ART) as well as its semisynthetic derivatives (ARTs) are seen as potential neuroprotectors. The goal of the present study is the assessment of neuroprotective, antibacterial activity of ART, as well as in silico studies of ART affinity to Aβ-peptides and the search of potential targets for ART. The study is referring to explores the impact of ART on an animal model of AD that is induced by the aggregated amyloidogenic peptide Aβ1-42 by electrophysiology and morphology analysis. Specifically, the focus is on the activation of the entorhinal cortex (ENT) as synaptic potentiation. Electrophysiological and histochemical have demonstrated that therapeutic injection of ART or its derivatives acts as a neuroprotective This treatment appears to prevent or slow down damage to brain tissue, and it promotes the restoration of neurons and their surrounding environment. The protective effects of ART may involve various mechanisms, including antioxidant activity, anti-inflammatory effects, and the inhibition of apoptosis. in silico studies revealed a direct, strong interaction of ART with the amyloidogenic peptides 5Aβ17-42, 12Aβ9-40, and 18Aβ9-40. in silico screening revealed several protein targets for ART, including cytochrome P-450 2B6 (CYP2B6). The highest binding affinity was found on the active site of CYP2B6. ART has great potential for discovering new drugs using combined therapies.