ABSTRACT Peach rootstock and scion cultivars are selected in breeding programs considering resistance to pests and diseases, salt tolerance, drought tolerance, and vigor. However, rootstock tolerance to aluminum (Al), which is markedly present in tropical and subtropical soils of the world, is not considered. Thus, it is essential to define potential markers that can contribute to the selection of Al-resistant or Al-tolerant peach rootstocks. The objective of this study was to identify Al-tolerant peach tree rootstock cultivars and clonal selections using physiological and oxidative stress variables. A completely randomized experimental design was used in a 13 (rootstock cultivars and clonal selections) × 2 (with and without Al) factorial arrangement, with three replications. Nursery peach trees of own-rooted ‘BRS Mandinho’ (without rootstock) and nursery trees of ‘BRS Mandinho’ grafted on different rootstock cultivars and clonal selections were grown in a hydroponic system, consisting of two treatments, with and without 100 mg L -1 of Al. Dry biomass, photosynthetic variables, pigment concentration, hydrogen peroxide content, membrane lipid peroxidation, and activity of the antioxidant enzymes were evaluated. The total dry matter production of the own-rooted ‘BRS Mandinho’ trees and the SS-CHI-09-39 and SS-CHI-09-40 selections is affected by the Al presence, representing a decline of 35.4, 37.2, and 24.4 %, respectively, compared to the treatment with Al. The highest total dry matter production in Al presence was observed for the ‘Sharpe’ rootstock. ‘Capdeboscq’, DB-SEN-09-23, FB-ESM-09-43, JB-ESM-09-13, JAH-MAC-09-77, SAS-SAU-09-71, and VEH-GRA-09-55 rootstock selections are tolerant to Al. The use of physiological and biochemical variables shows potential for the selection of clonal rootstocks tolerant or resistant to Al.