This paper is devoted to studying time decay estimates of the solution for Beam equation (higher order type wave equation) with a potentialutt+(Δ2+V)u=0,u(0,x)=f(x),ut(0,x)=g(x) in dimension three, where V is a real-valued and decaying potential. Assume that zero is a regular point of H=Δ2+V, we first prove the following optimal time decay estimates of the solution operators‖cos(tH)Pac(H)‖L1→L∞≲|t|−32and‖sin(tH)HPac(H)‖L1→L∞≲|t|−12. Moreover, if zero is a resonance of H, then time decay of the solution operators also is considered. It is noted that a first-kind resonance does not affect the decay rates of the propagator operators cos(tH) and sin(tH)H, but their decay will be significantly changed for the second and third-kind resonances.