Drinking water quality is integral to the Sustainable Development Goals framework. At the present, China's drinking water conservation faces a number of challenges that are partially brought on by strict conservation measures that don't fully take into account human-land conflict and sustainable development. Taking the idea of adaptive governance, this study seeks to identify adaptive thresholds and adaptive solutions for compatible drinking water conservation and local development. Pressure and resistance to drinking water quality in its status, future potential, and adaptive thresholds were explored to identify sustainable governance for the Baimei Conservation Area, Fujian Province. Field research, local governance forums, and the Soil and Water Assessment Tool (SWAT) model were utilized to explore the drinking water quality pressure and resistance to drinking water quality. In order to uncover potential future changes in pressure and resistance, suitability analyses and multi-scenario simulations were used to examine the status quo, pressure, and resistance scenarios. Adaptive thresholds were then identified through SWAT modeling of each scenario to guarantee the drinking water quality is greater than Class II in the Core Conservation Area and Class Ⅲ in 2nd-grade Conservation Area, respectively. The research finds that construction land development and farming are the key pressures on drinking water quality, and forests and wetlands are the primary resistances. The expansion of construction lands and the increased wetlands was centered on potential future scenarios because farming has no room for growth and forests are already heavily covered. The adaptive threshold of construction land expansion is identified to be 10% without new wetlands but can be 20% by adding 10% wetlands in subbasins, 5, 8, and 9. This study confirms the potential of adaptive sustainability for drinking water conservation areas. A similar analysis procedure can also be adapted to enhance adaptive governance for the sustainability of other conservation areas nationally and globally.