In this work the failure behavior of ductile cast iron microstructure subjected to tensile and low-cycle fatigue loadings is simulated by a 3-D, FE Reference Volume Element approach. A fully ferritic matrix is considered as representative of the low-hardness, high-ductility material class of nodular cast irons. Plastic flow potential rule, ductile and low cycle fatigue damage models are implemented at the micro-scale for the matrix constituent in conjunction with nonlinear cyclic hardening laws, and periodic boundary conditions are imposed over the RVE at the meso-scale. Different values of triaxiality are imposed. Numerical results confirm experimental findings of the behavior at the meso-scale and correctly predict the LCF lifetime, driving the interpretation of inner strain distribution, voids interaction and triaxiality effects on failure mechanisms.