A mechanistic-chemometrics model for life prediction of P110S steel in deep-well environments with H₂S/CO₂ coexistence was proposed. The model was developed by considering the interaction mechanism between uniform and pitting corrosion, then modified using a multi-factor chemometric drive incorporating temperature/pressure, flow velocity, stress. Finally, the pit-to-crack transition was modeled using finite element design and direct current potential drop measurements, completing the life prediction process. The model predicts a lifespan of 2.28–5.25 years at different well depths, and this result was validated with on-site data, indicating the model’s accuracy. The knowledge paradigm provided herein will assist in corrosion prediction.
Read full abstract