Abstract
Alternating Current Potential Drop (ACPD) measurements are routinely used for monitoring crack length in laboratory based fatigue tests, and so measurements will be taken on components which are exposed to cyclic dynamic stresses. It has been empirically observed that cyclic stresses cause a strong increase (above 10% is shown in this paper) in measured resistance that is both AC inspection frequency and loading frequency dependent. The excess resistance will result in erroneous measurements; this paper investigates the cause and provides recommendations to limit the influence. Applied stresses influence ACPD measurements through the magnetoelastic effect; elastic strain induces magnetization in ferromagnetic materials, which in turn influences the magnetic permeability and therefore skin depth. Further, it has recently been realised that cyclic magnetization results in a frequency dependent concentration of the magnetic flux at the surface of the component, and consequently a non-uniform spatial distribution of magnetic permeability. In this study it is found that the interaction between the non-uniform spatial distribution of both the current density and magnetic permeability results in significant non-linear modulation of the measurement signal. A combination of finite element simulations and experimental results are used to explore this phenomenon.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.