Modern, highly abundant materials called metal-organic structures (MOF) comprise metal ions and organic coordinating molecules and have attracted attention as potential biomedical materials due to their unusual properties. In the present study, the anticancer drug sorafenib (SF) and the Kaempferol (KM) were encapsulated in a nanocomposite made of bovine serum albumin (BA) as the core and pH-dependent zeolitic imidazolate framework-8 (ZIF) coating. To develop a multifunctional nanocarrier, polydopamine, Au3+ chelation, and gallic acid (GL) conjugation were used to build BA@SF@ZIF and BA@SF@ZIF/KM. A variety of characterisation techniques verified the success of the nanocarrier's fabrication. Studies in vitro exhibited that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL released their respective ligands in a pH-dependent manner due to ZIF-8. These nanocarriers' cytotoxicity and apoptotic effects were measured with the MTT evaluation. Morphological and nuclear damage staining in A549 and H1299 human lung cancer cells. The cytotoxicity investigation displayed that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL were more efficient than free sorafenib in A549 and H1299 cells with less toxicity in HUVECs. The DNA fragmentation of the cells was assessed by utilizing the comet assay. BA@SF@ZIF/KM/DA/GL increased ROS levels and caused mitochondrial membrane potential and DNA damage, which resulted in apoptosis. Therefore, we believe the developed smart BA@SF@ZIF/KM/DA/GL could be a promising therapeutic approach using sorafenib for lung cancer therapy.
Read full abstract