An isoquinolone derivative, methyl-2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032), was found to be a novel potent inhibitor of cyclic GMP (cGMP)-binding cGMP-specific phosphodiesterase (PDE5). We investigated the inhibitory effects of T-1032 on six PDE isozymes isolated from canine tissues. T-1032 specifically inhibited the hydrolysis of cGMP by PDE5 partially purified from canine lung, at a low concentration ( ic 50 = 1.0 nM, K i = 1.2 nM), in a competitive manner. In contrast, the ic 50 values of T-1032 for PDE1, PDE2, PDE3, and PDE4 were more than 1 μM. T-1032 also inhibited PDE6 from canine retina with an ic 50 of 28 nM, which is of the same order of magnitude as the ic 50 of sildenafil. cGMP hydrolytic activities of two alternative splice variants of canine PDE5 expressed in COS-7 cells were inhibited by this compound to a similar extent. T-1032 increased the intracellular concentration of cGMP in cultured rat vascular smooth muscle cells in the presence and absence of C-type natriuretic peptide, an activator of membrane-bound guanylate cyclase, whereas the compound did not change cyclic AMP levels. These data indicated that T-1032, which belongs to a new structural class of PDE5 inhibitors, is a potent and selective PDE5 inhibitor. This compound may be useful in pharmacological studies to examine the role of a cGMP/PDE5 pathway in tissues.
Read full abstract