Kinesin spindle protein (KSP) inhibitors are one of the most promising anticancer agents developed in recent years. Herein, we report the synthesis of ispinesib-core pyridine derivative conjugates, which are potent KSP inhibitors, with half-sandwich complexes of ruthenium, osmium, rhodium, and iridium. Conjugation of 7-chloroquinazolin-4(3H)-one with the pyridine-2-ylmethylimine group and the organometallic moiety resulted in up to a 36-fold increased cytotoxicity with IC50 values in the micromolar and nanomolar range also toward drug-resistant cells. All studied conjugates increased the percentage of cells in the G2/M phase, simultaneously decreasing the number of cells in the G1/G0 phase, suggesting mitotic arrest. Additionally, ruthenium derivatives were able to generate reactive oxygen species (ROS); however, no significant influence of the organometallic moiety on KSP inhibition was observed, which suggests that conjugation of a KSP inhibitor with the organometallic moiety modulates its mechanism of action.