Polycythemia vera (PV) is a chronic myeloproliferative neoplasm characterized by excessive levels of platelets (PLT), white blood cells (WBC), and hematocrit (HCT). Givinostat (ITF2357) is a potent histone-deacetylase inhibitor that showed a good safety/efficacy profile in PV patients during phase I/II studies. A phase III clinical trial had been planned and an adaptive dosing protocol had been proposed where givinostat dose is iteratively adjusted every 28 days (one cycle) based on PLT, WBC, and HCT. As support, a simulation platform to evaluate and refine the proposed givinostat dose adjustment rules was developed. A population pharmacokinetic/pharmacodynamic model predicting the givinostat effects on PLT, WBC, and HCT in PV patients was developed and integrated with a control algorithm implementing the adaptive dosing protocol. Ten in silico trials in ten virtual PV patient populations were simulated 500 times. Considering an eight-treatment cycle horizon, reducing/increasing the givinostat daily dose by 25 mg/day step resulted in a higher percentage of patients with a complete hematological response (CHR), that is, PLT ≤400 × 109 /L, WBC ≤10 × 109 /L, and HCT < 45% without phlebotomies in the last three cycles, and a lower percentage of patients with grade II toxicity events compared with 50 mg/day adjustment steps. After the eighth cycle, 85% of patients were predicted to receive a dose ≥100 mg/day and 40.90% (95% prediction interval = [34, 48.05]) to show a CHR. These results were confirmed at the end of 12th, 18th, and 24th cycles, showing a stability of the response between the eighth and 24th cycles.