The new anti-aggregating agent prasugrel is bioactivated by cytochromes P450 (CYP) 3A and 2B6. Ritonavir is a potent CYP3A inhibitor and was shown in vitro as a CYP2B6 inhibitor. The aim of this open-label cross-over study was to assess the effect of ritonavir on prasugrel active metabolite (prasugrel AM) pharmacokinetics in healthy volunteers. Ten healthy male volunteers received 10 mg prasugrel. After at least a week washout, they received 100 mg ritonavir, followed by 10 mg prasugrel 2 hr later. We used dried blood spot sampling method to monitor prasugrel AM pharmacokinetics (Cmax, t1/2, tmax, AUC0–6 hr) at 0, 0.25, 0.5, 1, 1.5, 2, 4 and 6 hr after prasugrel administration. A ‘cocktail’ approach was used to measure CYP2B6, 2C9, 2C19 and 3A activities. In the presence of ritonavir, prasugrel AM Cmax and AUC were decreased by 45% (mean ratio: 0.55, CI 90%: 0.40–0.7, p = 0.007) and 38% (mean ratio: 0.62, CI 90%: 0.54–0.7, p = 0.005), respectively, while t1/2 and tmax were not affected. Midazolam metabolic ratio (MR) dramatically decreased in presence of ritonavir (6.7 ± 2.6 versus 0.13 ± 0.07) reflecting an almost complete inhibition of CYP3A4, whereas omeprazole, flurbiprofen and bupropion MR were not affected. These data demonstrate that ritonavir is able to block prasugrel CYP3A4 bioactivation. This CYP-mediated drug–drug interaction might lead to a significant reduction of prasugrel efficacy in HIV-infected patients with acute coronary syndrome.
Read full abstract