Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 invitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models invivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin invivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.
Read full abstract