The soil microbiome, a crucial component of agricultural ecosystems, plays a pivotal role in crop production and ecosystem functioning. However, its response to traditional tillage systems in potato cultivation in the Peruvian highlands is still far from understood. Here, ecological and functional aspects of the bacterial community were analyzed based on soil samples from two traditional tillage systems: 'chiwa' (minimal tillage) and 'barbecho' (full tillage), in the Huanuco region of the Peruvian central Andes. Similar soil bacterial community composition was shown for minimal tillage system, but it was heterogeneous for full tillage system. This soil bacterial community composition under full tillage system may be attributed to stochastic, and a more dynamic environment within this tillage system. 'Chiwa' and 'barbecho' soils harbored distinct bacterial genera into their communities, indicating their potential as bioindicators of traditional tillage effects. Functional analysis revealed common metabolic pathways in both tillage systems, with differences in anaerobic pathways in 'chiwa' and more diverse pathways in 'barbecho'. These findings open the possibilities to explore microbial bioindicators for minimal and full tillage systems, which are in relationship with healthy soil, and they can be used to propose adequate tillage systems for the sowing of potatoes in Peru.