The pulsatile flow field distal to axisymmetric constrictions in a straight tube was studied using laser Doppler anemometry. The upstream centerline velocity waveform was sinusoidal at a frequency parameter of 7.5 and mean Reynolds number of 600. Stenosis models of 25, 50 and 75% area reduction were employed and velocity data were derived by ensemble averaging methods. Extensive measurements of the pulsatile velocity profiles are reported, and wall shear rates were computed from the near wall velocity profile gradients. The experiments indicate that a permanent region of poststenotic flow separation does not exist even for the severest constriction, in contrast to results for steady flow. Values of wall shear stress were greatest near the throat of the constriction and were relatively low in the poststenotic region, including the region of most intense flow disturbance. Turbulence was found only for the 75% stenosis model and was created only during a segment of the cycle. Although much emphasis has been placed upon turbulence in the detection of arterial stenoses, particularly as identified by Doppler ultrasound spectral broadening, the present study implies that identification of flow disturbances of an organized nature may be more fundamental in recognizing mild to moderate disease. Additionally, the relationship of these flow field results to the animal aortic coarctation model often employed in atherogenesis studies is discussed.
Read full abstract