BackgroundPancreatic ductal adenocarcinoma (PDAC) has a poor prognosis even after curative resection. A deep learning-based stratification of postoperative survival in the preoperative setting may aid the treatment decisions for improving prognosis. This study was aimed to develop a deep learning model based on preoperative data for predicting postoperative survival. MethodsThe patients who underwent surgery for PDAC between January 2014 and May 2015. Clinical data-based machine learning models and computed tomography (CT) data-based deep learning models were developed separately, and ensemble learning was utilized to combine two models. The primary outcomes were the prediction of 2-year overall survival (OS) and 1-year recurrence-free survival (RFS). The model's performance was measured by area under the receiver operating curve (AUC) and was compared with that of American Joint Committee on Cancer (AJCC) 8th stage. ResultsThe median OS and RFS were 23 and 10 months in training dataset (n = 229), and 22 and 11 months in test dataset (n = 53), respectively. The AUC of the ensemble model for predicting 2-year OS and 1-year RFS in the test dataset was 0.76 and 0.74, respectively. The performance of the ensemble model was comparable to that of the AJCC in predicting 2-year OS (AUC, 0.67; P = 0.35) and superior to the AJCC in predicting 1-year RFS (AUC, 0.54; P = 0.049). ConclusionOur ensemble model based on routine preoperative variables showed good performance for predicting prognosis for PDAC patients after surgery.