Long non-coding RNAs (lncRNAs) were reported to be involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). Microvascular invasion (MVI) is an independent predictor for early recurrence and overall survival in postoperative patients with HCC. However, the mechanisms how lncRNAs affect HCC and MVI remain elusive. By RNA sequencing (RNA-seq) in a series of 65 HCC samples and 30 paired adjacent non-tumor liver tissue, we identified a novel lncRNA AC104958.2 that was significantly upregulated in HCC tissues and associated with MVI. Overexpression of AC104958.2 obviously elevated cell viability, metastasis, invasion and epithelial-mesenchymal transition (EMT), while knockout of AC104958.2 mediated by CRISPR/Cas9 technique showed the opposite effects. In addition, the interaction between AC104958.2 and Poly (rC) binding protein 2 (PCBP2) was identified by RNA pull down and mass spectrometry (MS), which was further validated by RNA immunoprecipitation (RIP). PCBP2 was also upregulated in HCC and associated with MVI. High expression of both AC104958.2 and PCBP2 was correlated with tumor size, TNM stage and MVI in HCC. Overexpression of PCBP2 greatly increased the cell viability, metastasis, invasion and EMT. Moreover, actinomycin D assay showed that overexpression of PCBP2 enhanced the RNA stability of AC104958.2. In conclusion, our study showed that a novel lncRNA AC104958.2 exerted oncogenic roles in HCC and might be a promising biomarker and therapeutic target.
Read full abstract