Postoperative cognitive decline (POCD) is the predominant complication affecting patients over 60 years old following major surgery, yet its prediction and prevention remain challenging. Understanding the biological processes underlying the pathogenesis of POCD is essential for identifying mechanistic biomarkers to advance diagnostics and therapeutics. This study aimed to provide a comprehensive analysis of immune cell trajectories differentiating patients with and without POCD and to derive a predictive score enabling the identification of high-risk patients during the preoperative period. Twenty-six patients aged 60 years old and older undergoing elective major orthopedic surgery were enrolled in a prospective longitudinal study, and the occurrence of POCD was assessed seven days after surgery. Serial samples collected before surgery, and one, seven, and 90 days after surgery were analyzed using a combined single-cell mass cytometry and plasma proteomic approach. Unsupervised clustering of the high-dimensional mass cytometry data was employed to characterize time-dependent trajectories of all major innate and adaptive immune cell frequencies and signaling responses. Sparse machine learning coupled with data-driven feature selection was applied to the pre-surgery immunological dataset to classify patients at risk for POCD. The analysis identified cell-type and signaling-specific immune trajectories differentiating patients with and without POCD. The most prominent trajectory features revealed early exacerbation of JAK/STAT and dampening of inhibitory κB and nuclear factor-κB immune signaling responses in patients with POCD. Further analyses integrating immunological and clinical data collected before surgery identified a preoperative predictive model comprising one plasma protein and ten immune cell features that classified patients at risk for POCD with excellent accuracy (AUC=0.80, P=2.21e-02 U-test). Immune system-wide monitoring of patients over 60 years old undergoing surgery unveiled a peripheral immune signature of POCD. A predictive model built on immunological data collected before surgery demonstrated greater accuracy in predicting POCD compared to known clinical preoperative risk factors, offering a concise list of biomarker candidates to personalize perioperative management.