Platelet-derived growth factor receptor alpha (PDGFRα) is a marker of oligodendrocyte precursor cells in the central nervous system. NG2 is also considered a marker of oligodendrocyte precursor cells. However, whether there are differences in the distribution and morphology of oligodendrocyte precursor cells labeled by NG2 or PDGFRα in the developing neonatal rat brain remains unclear. In this study, by immunohistochemical staining, NG2 positive (NG2+) cells were ubiquitous in the molecular layer, external pyramidal layer, internal pyramidal layer, and polymorphic layer of the cerebral cortex, and corpus callosum, external capsule, piriform cortex, and medial septal nucleus. NG2+ cells were stellate or fusiform in shape with long processes that were progressively decreased and shortened over the course of brain development. The distribution and morphology of PDGFRα positive (PDGFRα+) cells were coincident with NG2+ cells. The colocalization of NG2 and PDGFRα in the cell bodies and processes of some cells was confirmed by double immunofluorescence labeling. Moreover, cells double-labeled for NG2 and PDGFRα were predominantly in the early postnatal stage of development. The numbers of NG2+/PDGFRα+ cells and PDGFRα+ cells decreased, but the number of NG2+ cells increased from postnatal days 3 to 14 in the developing brain. In addition, amoeboid microglial cells of the corpus callosum, newborn brain macrophages in the normal developing brain, did not express NG2 or PDGFRα, but NG2 expression was detected in amoeboid microglia after hypoxia. The present results suggest that NG2 and PDGFRα are specific markers of oligodendrocyte precursor cells at different stages during early development. Additionally, the NG2 protein is involved in inflammatory and pathological processes of amoeboid microglial cells.
Read full abstract