Neuronal responses to second-order motion, that is, to spatiotemporal variations of texture or contrast, have been reported in several cortical areas of mammals, including the middle-temporal (MT) area in primates. In this study, we investigated whether second-order responses are present in the cat posteromedial lateral suprasylvian (PMLS) cortex, a possible homolog of the primate area MT. The stimuli used were luminance-based sine-wave gratings (first-order) and contrast-modulated carrier stimuli (second-order), which consisted of a high-spatial-frequency static grating (carrier) whose contrast was modulated by a low-spatial-frequency drifting grating (envelope). Results indicate that most PMLS neurons responded to second-order motion and for the vast majority of cells, first- and second-order preferred directions were conserved. However, responses to second-order stimuli were significantly reduced when compared to those evoked by first-order gratings. Circular variance was increased for second-order stimuli, indicating that PMLS direction selectivity was weaker for this type of stimulus. Finally, carrier orientation selectivity was either absent or very broad and had no influence on the envelope's orientation selectivity. In conclusion, our data show that PMLS neurons exhibit similar first- and second-order response profiles and that, akin primate area MT cells, they perform a form-cue invariant analysis of motion signals.
Read full abstract