Aims & objectivesTo establish whether a suprapectineal pelvic reconstruction plate and posterior column screw (P&S) construct or a single 6.5-mm cannulated posterior column screw (PCS) construct demonstrates greater mechanical stability for fixation of acetabulum fractures involving the posterior column (PC). We hypothesized that the PCS construct would result in less fracture site motion. Materials & methodsTwelve fourth-generation composite hemipelvi were utilized, 6 for each construct. The P&S construct consisted of a suprapectineal pelvic reconstruction plate with two 3.5-mm posterior column screws crossing the fracture site in lag-by-technique fashion and two screws anchoring the plate to the sciatic buttress. The PCS construct consisted of a single 6.5-mm partially threaded cannulated screw placed in an antegrade fashion. Both fixation models were cyclically loaded at 0.5 cycles/second at 400N and 800N, first in a sit-to-stand position that is expected during recovery, and subsequently in a squat-to-stand position to test overload conditions. ResultsUnder sit-to-stand loading, the PCS construct resulted in less motion at the fracture site than the P&S construct (0.06 ± 0.02 mm vs 0.1 ± 0.02 mm at 400N, p = 0.02; 0.13 ± 0.03 mm vs 0.19 ± 0.04 mm at 800N, p = 0.03). The PCS construct also demonstrated less fracture site motion under squat-to-stand loading (0.22 ± 0.13 mm vs 1.9 ± 0.5 mm at 400N, p = < 0.001; 1.48 ± 0.44 mm vs 4.77 ± 0.3 mm at 800N, p = < 0.001). At 800 N, half of the repairs failed during squat-to-stand loading (2 PCS, 4 P&S). ConclusionFixation of the posterior column of the acetabulum with a 6.5-mm cannulated screw demonstrated comparable fracture motion upon loading compared to the plate and screw construct.
Read full abstract