Rats prepared with lesions of the prefrontal cortex, posterior parietal cortex, hippocampus, or medial septal area were tested for acquisition of a number of variations of the open-field water maze using a version of place learning assessment described by Eichenbaum, Stewart, and Morris (1991). Specifically, the individual role of the aforementioned cortical and subcortical structures in tasks with differing representational demands on navigation were assessed. The results suggest that the sham-operated control, posterior parietal cortex-lesioned rats, and medial septal area-lesioned rats were able to navigate effectively under changing task conditions. Conversely, the navigational performances of the prefrontal cortex- and hippocampal formation-lesioned rats were impaired when task demands changed. The results are discussed in terms of the flexible use of multiple distal cues to guide navigation and the resulting loss of this flexibility after lesions to either the prefrontal cortex or the hippocampus.