As children are more vulnerable to radiation-induced cancers and have longer life expectancies, it is essential to implement strict radiation protection measures in pediatric imaging. This study aimed to review radiation dose-minimizing measures in pediatric abdominal computed tomography (CT) examinations. A systematic search across various databases, including Web of Science, PubMed, SpringerLink, ScienceDirect, and Google Scholar, yielded a total of 7,314 articles. The search used keywords that aligned with the objectives of the study. This study included 77 publications after applying the criteria for inclusion and exclusion. We carefully reviewed these selected articles for compliance with the inclusion criteria and excluded them if they did not meet the specified criteria. Only 12 articles fulfilled the strict criteria. An in-depth review of 12 selected articles demonstrated the radiation dose reduction techniques and strategies, which include prefiltering and post-processing algorithms, careful adjustment of exposure parameters such as tube voltage (kVp) and current (mAs), and the establishment of diagnostic reference levels (DRL). Reduction of radiation exposure in pediatric CT imaging demands multifaceted approaches. To reduce the ionizing radiation dose while still obtaining high-quality diagnostic images, healthcare practitioners should adhere to DRL, adjust exposure factors, implement prefiltration, employ AI, and use post-processing algorithms.