Despite the optimal angiographic result of percutaneous coronary intervention (PCI), residual disease at the site of the culprit lesion can lead to major adverse cardiac events. Post-PCI physiological assessment can identify residual stenosis. This meta-analysis aims to investigate data of studies examining post-PCI physiological assessment in relation to long-term outcomes. Studies were included in the meta-analysis after performing a systematic literature search on July 1, 2022. The primary end point was the incidence of major adverse cardiac events, vessel-orientated cardiac events, or target vessel failure. Low post-PCI fractional flow reserve, reported in 7 studies with fractional flow reserve cutoff values between 0.84 and 0.90, including 4017 patients, was associated with an increased rate of the primary end point (hazard ratio [HR], 2.06; 95% CI, 1.37-3.08). One study reported about impaired post-PCI instantaneous wave-free ratio with instantaneous wave-free ratio cutoff value of 0.95 in relation to major adverse cardiac events, showing a significant association (HR, 3.38; 95% CI, 0.99-11.6; P = .04). Low post-PCI quantitative flow ratio, reported in 3 studies with quantitative flow ratio cutoff value between 0.89 and 0.91, including 1181 patients, was associated with an increased rate of vessel-orientated cardiac events (HR, 3.01; 95% CI, 2.10-4.32). Combining data of all modalities, impaired physiological assessment showed an increased rate of the primary end point (HR, 2.32; 95% CI, 1.71-3.16) and secondary end points, including death (HR, 1.41; 95% CI, 1.04-1.89), myocardial infarction (HR, 2.70; 95% CI, 1.34-5.42) and target vessel revascularization (HR, 2.88; 95% CI, 1.91-4.35). Impaired post-PCI physiological assessment is associated with increased adverse cardiac events and individual end points, including death, myocardial infarction, and target vessel revascularization. Therefore, prospective studies are awaited on whether physiology-based optimization of PCI results in better clinical outcomes.
Read full abstract