We complete the post-Newtonian (PN) prediction at the 3.5PN order for the spin contributions to the gravitational waveforms emitted by inspiraling compact binaries, in the case of quasi-circular, equatorial orbits, where both spins are aligned with the orbital angular momentum. Using results from the multipolar post-Minkowskian wave generation formalism, we extend previous works that derived the dynamics and gravitational-wave energy flux and phasing, by computing the full waveform decomposed in spin-weighted spherical harmonics. This new calculation requires the computation of multipolar moments of higher multipolar order, new quadratic-in-spin contributions to the hereditary tail terms entering at the 3.5PN order, as well as other non-linear interactions between moments. When specialized to the test-mass limit, our results are equivalent to those obtained in the literature for the waveform emitted by a test-mass in equatorial, circular orbits around a Kerr black hole. We also compute the factorized modes for use in effective-one-body waveform models, correcting the 2.5PN nonspinning and 3PN quadratic-in-spin terms in the (2,1) mode used in current models.