To evaluate computationally the optical performance of AcrySof IQ Vivity extended depth-of-focus (EDOF) intraocular lenses (IOLs) in post-laser in situ keratomileusis (LASIK) eyes. Visual Optics and Biophotonics Laboratory, Madrid, Spain. Experimental study. Computer pseudophakic eye models were implemented using reported post-LASIK corneal aberrations (refractive corrections from -7.5 to +4.5 diopters [D]) and virtually implanted with monofocal (AcrySof IQ) or EDOF (AcrySof IQ Vivity) IOLs. Retinal image quality was quantified through visual Strehl (VS). The depth of focus (DOF) was calculated from the through-focus VS curves. Halos were estimated from the light spread in the image of a pinhole. Those quantitative parameters were obtained for 5.0 and 3.0 mm pupil diameters. Simulated virgin eyes showed VS of 0.89/0.99 with monofocal IOLs and 0.74/0.52 with EDOF IOLs for 5.0/3.0 mm pupils at best focus. VS decreased with induced spherical aberration (SA) by 25% and with induced SA + coma by 61% on average (3.0 mm pupils). The DOF was 2.50 D in virgin eyes with EDOF IOLs, 1.66 ± 0.30 and 2.54 ± 0.31 D ( P < .05) on average in post-LASIK eyes for 3.0 mm pupils, monofocal and EDOF IOLs, respectively. Halos were more sensitive to SA induction for 5.0 mm pupils, and induction of positive SA (myopic LASIK) resulted in reduced halos with the EDOF when compared with the monofocal IOLs, by 1.62 (SA) and 1.86 arc min (SA + coma), on average. Computer post-LASIK pseudophakic eye models showed that the DOF was less dependent on the presence of SA and coma with EDOF IOLs and that halos were reduced with EDOF IOLs compared with the monofocal IOL for a range of SA.
Read full abstract