Withania somnifera is an important medicinal plant, however, its cultivation and quality are compromised through infestation by leaf spot disease caused by the fungus, Alternaria alternata. To find suitable strategies against this disease, studies on post-infectional changes are important. ROS are critical as they interact with other defence signalling pathways. We analyzed ROS-generating and scavenging systems in healthy and diseased leaf samples of W. somnifera and ROS-driven downstream defence pathways. We used DAB and NBT assays for ROS detection, spectrophotometry and in-gel assays for ROS scavenging enzymes, a thioglycolic acid (TGA) based assay, histochemical staining for lignin, and qRT-PCR for transcript-level expression. Leaf spot infection in W. somnifera increased NADPH oxidase activity and ROS accumulation in infected leaves, together with enhanced antioxidant enzyme activity. Leaf spot-infected leaves had increased lignin content and higher expression of lignin biosynthesis genes. In addition, transcript levels of defence-related genes, NPR1 and PR, were also upregulated. The present work provides insights into responses to leaf spot disease through defence-related signalling in W. somnifera. It demonstrates crosstalk between ROS and lignin biosynthesis. This work identified potential targets for developing strategies to confer disease resistance against A. alternata in W. somnifera.
Read full abstract