Rayleigh scattering has become an accepted technique for the determination of total number density during the combustion process. The interpretation of the ratio of total Rayleigh scattering signal as a ratio of densities or temperatures is hampered by the changing composition through a flame, since the average Rayleigh scattering cross-section depends on the gas composition. Typical correction factors as a function of degree of reaction, fuel and equivalence ratio were calculated. The fuels considered were H2, CH4, C2H4, C2H6 and C3H8. Factors as low as 0.7 and 0.56 were found for the heaviest hydrocarbon fuel at large equivalence ratio for interpreting the Rayleigh scattering intensity as gas density and inverse temperature, respectively. This is primarily due to the presence of CO and H2 as intermediates. As CO and H2 are subsequently oxidized to CO2 and H2O, these factors approach 1.0. Conversely, the worst case, when using H2 as a fuel, occurs in the post flame zone. However, the correction factors for H2 are near 1.0 and the errors involved will, in general, remain within the expected experimental accuracy of a typical Rayleigh scattering system. Linear correlations of correction factors with equivalene ratio and with the product of equivalence ratio and fuel molecular weight were found and presented. The interpretation of Rayleigh scattering as temperature was found to have larger errors than the interpretation as density. Corrections for changes in gas composition were applied to Rayleigh scattering temperature measurements in the post flame region of CH4 and C3H8 flames with equivalence ratios of 0.75 and 1.0. The corrected temperatures were in excellent agreement with thermocouple measurements.
Read full abstract