Technology Update As oil fields throughout the world are reaching maturity and requiring the use of secondary and tertiary recovery techniques, oil companies are looking for new processes and technologies to extract more oil from these aging fields. In the next 20 years, an estimated 50% of waterflooded fields will need to shift to enhanced oil recovery (EOR). Carbon dioxide (CO2) has proved to be an almost ideal EOR medium for a broad range of reservoir types and conditions, yielding increases in recovery of up to 15% of oil initially in place. Most of the experience with commercial CO2 EOR has been gained in onshore oil fields in the United States, particularly in the Permian Basin of Texas, where nearby sources of natural CO2 gas and an extensive CO2 transport infrastructure are available. “Onshore CO2 flooding is economical at CO2 costs of around USD 35 to 40 per tonne and an oil price of more than USD 75 per barrel,” said Richard Doidge, director of the TriGen CO2 removal technology program at Maersk Oil. “Where natural CO2 sources are not readily available, CO2 may today be sourced from petrochemical and pre- or post-combustion capture plants, for example. However, these capture methods typically yield CO2 prices of USD 80 to 120 per tonne, which would make CO2 flooding uneconomical.” A ready but limited source of lowcost CO2 can be obtained from facilities, such as ethanol, petrochemical, and gasto- liquids plants, but the bulk of globally emitted industrial CO2 comes from power production and heavy industries, such as steelmaking and cement production. There are three main approaches to removing or “scrubbing” CO2 from feed or flue gases: precombustion, post-combustion, and combustion. Because of the oxygen required in the combustion mixture, the combustion methods are usually called oxy-fuel processes. The efficiency of these processes depends on, among other factors, the concentration of CO2 in the feed or flue gas and the pressure at which the contaminated gas is treated.