BackgroundAntimicrobial resistance (AMR) poses a significant threat to pediatric health; therefore, precise identification of pathogens as well as AMR is imperative. This study aimed at comprehending antibiotic resistance patterns among critically ill children with infectious diseases admitted to pediatric intensive care unit (PICU) and to clarify the impact of drug-resistant bacteria on the prognosis of children.MethodsThis study retrospectively collected clinical data, identified pathogens and AMR from 113 children’s who performed metagenomic next-generation sequencing for pathogen and antibiotic resistance genes identification, and compared the clinical characteristic difference and prognostic effects between children with and without AMR detected.ResultsBased on the presence or absence of AMR test results, the 113 patients were divided into Antimicrobial resistance test positive group (AMRT+, n = 44) and Antimicrobial resistance test negative group (AMRT-, n = 69). Immunocompromised patients (50% vs. 28.99%, P = 0.0242) and patients with underlying diseases (70.45% vs. 40.58%, P = 0.0019) were more likely to develop resistance to antibiotics. Children in the AMRT + group showed significantly increased C-reaction protein, score of pediatric sequential organ failure assessment and pediatric risk of mortality of children and longer hospital stay and ICU stay in the AMRT + group compared to the AMRT+- group (P < 0.05). Detection rate of Gram-negative bacteria was significantly higher in the AMRT + group rather than Gram-positive bacteria (n = 45 vs. 31), in contrast to the AMRT- group (n = 10 vs. 36). Cephalosporins, β-lactams/β-Lactamase inhibitors, carbapenems and sulfonamides emerged as the most common types of drug resistance in children. Resistance rates to these antibiotics exhibited considerable variation across common pathogens, including Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii.ConclusionsThe development of drug resistance in bacteria will significantly affect the prognosis of patients. The significant differences in drug resistance of common pathogenic bacteria indicate that identification of drug resistance is important for the rational use of antibiotics and patient prognosis.
Read full abstract