According to resource limitation, a more realistic pest management is that the impulsive control actions should be adjusted according to the densities of both pest and natural enemy in the field, which result in nonlinear impulsive control. Therefore, we have proposed a Beddington–DeAngelis interference predator-prey model concerning integrated pest management with both density-dependent pest and natural enemy population. We find that the pest-eradication periodic solution is globally stable if the impulsive period is less than the critical value by Floquet theorem. The condition of permanent is established, and a stable positive periodic solution appears via a supercritical bifurcation by bifurcation theorem. Finally, in order to investigate the effects of those nonlinear control strategies on the successful pest control, the bifurcation diagrams showed that the model exists with very complex dynamics. Consequently, the resource limitation may result in pest outbreak in complex ways, which means that the pest control strategies should be carefully designed.