The potentially toxic element pollution of agricultural soils has become a significant environmental threat to food safety and human health. Accurately identifying sources of potentially toxic element pollution is key to developing effective pollution prevention and control measures. In this study, regional potentially toxic element pollution of the soils in the Nanliujiang River Basin was analyzed using the positive matrix factorization (PMF) model and the geo-detector model. First, topsoil samples from the study area were collected to analyze eight potentially toxic elements in the soil, including As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The PMF model was used to conduct source apportionment of the potentially toxic element data and identify the primary pollution sources and their contribution rates. Then, the geo-detector model was used to analyze the key factors affecting the spatial distribution of the potentially toxic elements and the influence of natural and human factors on the distribution of the potentially toxic elements. There are four potentially toxic element pollution sources of the agricultural soil in the study area: geological background, agricultural activities, industrial discharge, and river irrigation. The geological background contributed the most. The main factors affecting the spatial distribution of potentially toxic elements included agricultural activities, industrial discharge, and river irrigation. This integrated method can analyze the formation of potentially toxic element pollution in depth from the perspectives of source apportionment and spatial differentiation and provide a scientific basis and decision support for preventing and controlling potentially toxic element pollution in agricultural soils. This study provides a new method and scientific basis for identifying and preventing potentially toxic element pollution sources in agricultural soil and can guide the formulation of targeted soil pollution control measures.
Read full abstract