Haff disease typically develops after eating contaminated marine or freshwater species, especially fish. Despite still having an unknown etiology, recent reports have suggested its possible correlation with palytoxins. Therefore, the present work aimed to optimize and perform a validation of a sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the analysis of palytoxin and some of its analogs, with the main purpose of investigating their presence in marine and freshwater food samples associated with Haff disease in Brazil. The method optimization was performed using a central composite rotatable design and fish samples fortified with the palytoxin standard. Then, the optimized method was validated for different food matrices, including freshwater and marine fish, mollusks, and crustaceans. The sample preparation involved a solid–liquid extraction using methanol and water, solid-phase extraction using Strata-X cartridges, and on-column palytoxin oxidation. The detection of the main oxidized fragments (amino and amide aldehydes) was achieved by LC-MS/MS with electrospray ionization in positive mode, using a C18 column, as well as acetonitrile and water as mobile phases, both acidified with 0.1 % of formic acid. After optimization and validation, the etiological investigation involved the analysis of 16 Brazilian Haff disease-related food samples (in natura and leftover meals) from 2022. The method was demonstrated to be appropriate for quantitative analysis of freshwater and marine species. So far, it has proven to be one of the most sensitive methods related to palytoxin detection (LOD 10 μg/kg), being able to work in a range that includes the provisional ingestion limit (30 μg/kg). Regarding the Haff disease-related samples analysis, there is a strong indication of palytoxin contamination since the amino aldehyde (common fragment for all palytoxins) was detected in 15 of the 16 samples. Selected results were confirmed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS).
Read full abstract