In this paper, a ratio-dependent predator–prey model with diffusion is considered. The stability of the positive constant equilibrium, Turing instability, and the existence of Hopf and steady state bifurcations are studied. Necessary and sufficient conditions for the stability of the positive constant equilibrium are explicitly obtained. Spatially heterogeneous steady states with different spatial patterns are determined. By calculating the normal form on the center manifold, the formulas determining the direction and the stability of Hopf bifurcations are explicitly derived. For the steady state bifurcation, the normal form shows the possibility of pitchfork bifurcation and can be used to determine the stability of spatially inhomogeneous steady states. Some numerical simulations are carried out to illustrate and expand our theoretical results, in which, both spatially homogeneous and heterogeneous periodic solutions are observed. The numerical simulations also show the coexistence of two spatially inhomogeneous steady states, confirming the theoretical prediction.