Aiming to address errors in the estimation of the position and attitude of an unmanned vessel, especially during vibration, where the rapid loss of feature point information hinders continuous attitude estimation and global trajectory mapping, this paper improves the monocular ORB-SLAM framework based on the characteristics of the marine environment. In general, we extract the location area of the artificial sea target in the video, build a virtual feature set for it, and filter the background features. When shaking occurs, GNSS information is combined and the target feature set is used to complete the map reconstruction task. Specifically, firstly, the sea target area of interest is detected by YOLOv5, and the feature extraction and matching method is optimized in the front-end tracking stage to adapt to the sea environment. In the key frame selection and local map optimization stage, the characteristics of the feature set are improved to further improve the positioning accuracy, to provide more accurate position and attitude information about the unmanned platform. We use GNSS information to provide the scale and world coordinates for the map. Finally, the target distance is measured by the beam ranging method. In this paper, marine unmanned platform data, GNSS, and AIS position data are autonomously collected, and experiments are carried out using the proposed marine ranging system. Experimental results show that the maximum measurement error of this method is 9.2%, and the average error is 4.7%.
Read full abstract