Objective: We constructed 3D-model of ONFH in computer according to three-dimensional computerized tomography (3D-CT) data. We determined the location and volume of necrosis to investigate its clinical efficacy. Method: Totally 92 hips (59 cases) with ONFH (44 males, 15 females) were included, with mean age of 37.5 years (range from 26 to 58). Totally 20 cases (35 hips) were induced by corticosteroid (CTSs), 31 (49 hips) induced by alcohol, 4 (4 hips) induced by trauma and 4 (4 hips) idiopathic. All the hips were categorized into stage ARCO II. Finally diagnosed by MRI, all hips were scanned by CT to acquire data in DICOM format. The images were imported into software to extract 3D-shape of femoral heads, necrotic foci, their volumes and distribution in each quadrant. Deviation of volumes between digital image and biopsy specimen was analyzed by SAS9.1 package. Correlativity between collapse and volume of necrosis under specific pathogeneses was also analyzed. Among the cases necessitating total hip arthroplasty (THA) due to advancing to ARCO III, we randomly selected 8 of them to perform 3D-CT scanning thrice prior to surgical operation. Total femoral heads harvested were torn asunder. Cubic capacity of femoral heads and necrotic foci were hereby measured and compared with those acquired from digital models. Result: Through the digital model, necrotic foci were found mainly locating within the super lateral portion of femoral head, coinciding with those observed in biopsy specimen. Average volumetric ratio of digitally acquired necrosis focus/femoral head in 58 collapsed hips was 36.8%. The ratio of the 34 hips without collapse was 17.3%. In collapsed femoral heads, the distribution of necrosis focus was 23.4% in quadrant 1 (q1), 23.6% in q2, 12.1% in q3, 14.4% in q4, 9.0% in q5, 11.8% in q6, 1.6% in q7 and 3.9% in q8. In femoral heads without collapse, the distribution was 34.2% in q1, 29.6% in q2, 11.8% in q3, 11.3% in q4, 6.0% in q5, 6.0% in q6, 0.5% in q7 and 0.4% in q8. As for the average cubic capacities of femoral heads and necrotic foci, those acquired from the digital model and biopsy specimen had no significant difference in matched-pairs test (t = -1.49, P = 0.179 for femoral heads and t = -1.52, P = 0.172 for necrotic foci). There was significant difference (F = 2.720, P = 0.035 < 0.05) among volumetric ratios of necrotic focus/total femoral head under different pathogeneses, which were 33.55% in alcohol-induced cases, 26.74% in the CTSs-induced, 40.41% in the trauma-induced, and 18.39% in idiopathic cases. Shapes of necrotic foci could be subdivided into 5 types: vault, sublobe, dumbbell, ball and petal. The distribution of these 5 types of shape was different among necroses caused by CTSs, alcohol, trauma and idiopathic pathogeneses. The distribution in 58 collapsed femoral heads was also distinct from that in 34 femoral heads without collapse. Through multinomial logistic regression, we analyzed the correlativity among volumetric ratios of necrotic tissue, its distribution in q2(superioanteriomedial portion of femoral head) and collapse. The result showed statistical significance (P was respectively 0.0001 and 0.0005). Decision tree model showed that 94.6% (53/56) hips would progress into collapse if the volumetric ratio of necrotic tissue was over 23.48%. Otherwise, if distribution in q2 was over 45.13%, 83.3% (5/6) hips would progress into collapse. No collapse (0/30) would occur if the distribution of necrotic tissue in q2 was under 45.13%. Conclusion: Digital 3D-model reconstructed from CT scanning can precisely incarnate spatial orientation of necrotic foci in femoral head. Multinomial logistic regression and decision-making tree shows that volumetric ratio of necrotic tissues plays an important role in anticipating collapse of femoral head.