To investigate the effect of plasmapheresis via the portal vein for "small-for-size" syndrome (SFSS) aided by extracorporeal continuous portal diversion (ECPD). Extensive or total hepatectomy in the pig is usually adopted as a postoperative liver failure (PLF) or SFSS model. In this study, animals which underwent 85%-90% hepatectomy were randomized into either the Systemic group (n = 7) or the Portal group (n = 7). In the Systemic group, all pigs received temporal plasmapheresis (PP) via the extracorporeal catheter circuit (systemic to systemic circulation) from 24 to 30 h post-hepatectomy (PH); in the Portal group, all pigs received ECPD to divert partial portal vein flow (PVF) to the systemic circulation after hepatectomy, then converted to temporal PP from 24 to 30 h PH, and subsequently converted to ECPD again until 48 h PH. In the Portal group, the PVF was preserved at 3.0-3.3 times that of the baseline value, similar to that following 70% hepatectomy, which was regarded as the optimal PVF to the hypertrophic liver remnant. At 48 h PH, all pigs were re-opened and the portal vein pressure (PVP), PVF, and HAF (hepatic artery flow) were measured, and then diversion of the portal venous flow was terminated. After 1 h the PVP, PVF, and HAF were re-measured. The portal hemodynamic changes, liver injury, liver regeneration and bacterial/lipopolysaccharide (LPS) translocation were evaluated in the two groups. The PVP in the Portal group was significantly lower than that in the Systemic group during the time period from 2 to 49 h PH (P < 0.05). Serum alanine aminotransferase (ALT), total bilirubin (TB) and ammonia were significantly reduced in the Portal group compared with the Systemic group from 24 to 48 h PH (P < 0.05). The Portal group may have attenuated sinusoidal endothelial injury and decreased the level of HA compared with the Systemic group. In the Systemic group, there was significant sinusoidal dilation, hydropic changes in hepatocytes and hemorrhage into the hepatic parenchyma, and the sinusoidal endothelial lining was partially destroyed and detached into the sinusoidal space. CD₃₁ immunostaining revealed significant destruction of the endothelial lining. In the Portal group, there was no intraparenchymal hemorrhage and the sinusoidal endothelial cells and hepatocytes were well preserved. CD₃₁ immunostaining was mild which indicated less destruction of the endothelial lining. HA was significantly decreased in the Portal group compared with the Systemic group from 2 to 48 h PH. The rate of liver remnant regeneration was elevated, while apoptosis was attenuated in the Portal group compared with the Systemic group. Thymidine kinase activity was much higher in the Portal group than in the Systemic group at 48 h PH. The PCNA index was significantly increased and the apoptotic index was significantly decreased in the Portal group compared with the Systemic group. Bacterial translocation and endotoxin, as well as the inflammatory response, were significantly attenuated in the Portal group compared with the Systemic group. LPS, tumor necrosis factor-α and interleukin-6 levels were all significantly decreased in the Portal group compared with the Systemic group from 24 to 48 h PH, while bacterial DNA level was significantly decreased from 2 to 48 h PH. PP plus ECPD via the portal vein can attenuate toxic load and hyperperfusion injury, and should be undertaken instead of PP via the systemic circulation in SFSS or PLF.