ConspectusThe last two decades have witnessed a tremendous development of crystalline microporous adsorbents in a wide range of applications including molecular adsorption, storage and separation, purification, as well as catalysis. The main players as porous materials that have contributed to the developments are extended molecular frameworks (e.g., metal-organic frameworks, MOFs; covalent-organic frameworks, COFs) or discrete porous molecules (e.g., metal-organic cages, MOCs; porous organic cages, POCs) thanks to the high degrees of freedom in their structural designability and tunability. To overcome the processability issue originating from their powder forms after synthesis, one main strategy is to hybridize the microporous adsorbents as pore-containing fillers with solvents or polymers as processable matrices to produce porous soft materials, such as porous liquids, gels/aerogels, and mixed-matrix membranes, depending on the form of matrix used. Nevertheless, the fabrication of "ideal" hybrid materials relies on the homogeneous distribution of the pore-containing fillers within the matrices. It is still challenging to find a versatile way to solve the aggregation issues of fillers and their insufficient interaction with the matrices, which are concerned with inhibiting the translation of the distinctive properties of microporous adsorbents into the obtained hybrid soft materials.Herein, we describe a new bottom-up approach for the fabrication of "pore-networked soft materials" based on the concept of directly interconnecting the pore-containing fillers into a continuous pore network within the matrices. The advantages of the pore-networking strategy lie in two main aspects: (i) the elimination of the need to struggle with the aggregation issue of fillers due to their overall interconnection throughout the matrices; (ii) the generation of continuous pore networks that guarantee the efficient molecular mass transfer in the materials. In this Account, we summarize our state-of-the-art progress of pore-networked soft materials based on the use of MOCs, alternatively called metal-organic polyhedra (MOPs) herein, as pore units for the pore network construction. The good solubility of MOPs in organic solvents allows them to be feasibly processed in solution, wherein the coordination of MOPs with organic linkers leads to the formation of linked MOP gels featuring not only intrinsic MOP cavities but also tunable extrinsic porosities generated between linked MOPs through the control of MOP/linker structures and network connectivity. Furthermore, the matrix of the linked MOP network, here referred to as the continuous phase with respect to the entire porous MOP network, is not limited to the solvents. We anticipate that the implementation of air, liquids, and polymers as the matrices could result in different forms of pore-networked soft materials like aerogels, foams, gels, monoliths, and membranes. For instance, we demonstrate the fabrication of linked MOP aerogel and permanently porous gel with their potential applications on selective CO2 photoreduction and gas sorption, respectively. We believe that the pore-network strategies will advance the development of porous soft materials featuring unique advantages and properties beyond the current hybrid systems.