Ceramic-coated polyolefin separator technology is considered a simple and effective method for the improvement of lithium-ion battery (LIB) safety. However, the characteristics of ceramic powder can adversely affect the surface structure and ion conductivity of the separators. Therefore, it is crucial to develop a ceramic powder that not only improves the thermal stability of the separators but also enhances ion conductivity. Herein, network spherical α-Al2O3 (N-Al2O3) with a multi-dimensional network pore structure was constructed. Furthermore, N-Al2O3 was applied as a coating to one side of polyethylene (PE) separators, resulting in N-Al2O3-PE separators that exhibit superior thermal stability and enhanced wettability with liquid electrolytes. Notably, the N-Al2O3-PE separators demonstrated exceptional ionic conductivity (0.632 mS cm−1), attributed to the internal multi-dimensional network pore structures of N-Al2O3, which facilitated an interconnected and efficient “highway” for the transport of Li+ ions. As a consequence, LiCoO2/Li half batteries equipped with these N-Al2O3-PE separators showcased remarkable rate and cycling performance. Particularly at high current densities, their discharge capacity and capacity retention rate significantly outperformed those of conventional PE separators.
Read full abstract