We establish Hölder continuity for locally bounded weak solutions to certain parabolic systems of porous medium type, i.e. ∂tu-div(m|u|m-1Du)=0,m>0.\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\partial _t \\mathbf{u}-\\mathrm{div}(m|\\mathbf{u}|^{m-1}D\\mathbf{u})=0,\\quad m>0. \\end{aligned}$$\\end{document}As a consequence of our local Hölder estimates, a Liouville type result for bounded global solutions is also established. In addition, sufficient conditions are given to ensure local boundedness of local weak solutions.