PurposeIn the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to address the effect of journal misalignment and coupled-stress lubricant on the steady-state film pressure of the double-layered porous journal bearing with tangential velocity slip and percolation effect.Design/methodology/approachFirst, considering the tangential velocity slip, the most general modified Reynolds type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium, incorporating the percolation effect for a double-layered porous bearing. Here, considering the misalignment caused by shaft displacement. Film thickness expression established considering the effect of misalignment. Steady-state film pressures are obtained by solving modified Reynolds equation based on the coupled-stress lubrication theory. Effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are discussed and demonstrated in the graphical form.FindingsIn this paper, effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are obtained. In general, higher degree of misalignment gives higher steady-state pressure value in the film region, and this pressure increases due to increase in coupled-stress parameter up to a certain limit.Originality/valueTo the best of the author’s knowledge, there is no literature available, so far, that addresses the analysis of the steady-state pressure in the film region of a doubled–layered porous journal bearing under misaligned condition with coupled-stress lubricant. But in this paper all these points are included, which makes this article valuable in design purpose.
Read full abstract