In this paper we present a new method to electrodeposit highly porous gold (h-PG) onto a polycrystalline solid gold electrode without any template. The electrodeposition is carried out by first cycling the electrode potential between +0.8 and 0 V in 10 mM HAuCl4 with 2.5 M NH4Cl and then applying a negative potential for the production of hydrogen bubbles at the electrode surface. After that the modified electrode was characterized in sulfuric acid to estimate the real surface area ( Areal) to be close to 24 cm2, which is roughly 300 times higher compared to the bare gold electrodes (0.08 cm2). The electrode was further incubated overnight with three different thiols (4-mercaptobenzoic acid (4-MBA), 4-mercaptophenol (4-MPh), and 4-aminothiophenol (4-APh)) in order to produce differently charged self-assembled monolayers (SAMs) on the electrode surface. Finally a fructose dehydrogenase (FDH) solution was drop-cast onto the electrodes. All the modified electrodes were investigated by cyclic voltammetry both under nonturnover and turnover conditions. The FDH/4-MPh/h-PG exhibited two couples of redox peaks for the heme c1 and heme c2 of the cytochrome domain of FDH and as well as a well pronounced catalytic current density (about 1000 μA cm-2 in the presence of 10 mM fructose) due to the presence of -OH groups on the electrode surface, which stabilize and orientate the enzyme layer on the electrode surface. The FDH/4-MPh/h-PG based electrode showed the best analytical performance with an excellent stability (90% retained activity over 90 days), a detection limit of 0.3 μM fructose, a linear range between 0.05 and 5 mM, and a sensitivity of 175 ± 15 μA cm-2 mM-1. These properties were favorably compared with other fructose biosensors reported in the literature. The biosensor was successively tested to quantify the fructose content in food and beverage samples. No significant interference present in the sample matrixes was observed.
Read full abstract