In this study, a novel ultramicroporous pillar-layered Ni-LAP-NH2 [Ni2(l-asp)2(Pz-NH2)] (l-asp = l-aspartic acid, Pz-NH2 = aminopyrazine) membranes on porous α-Al2O3 tubes with high performance and good thermal stability was first fabricated using isostructural Ni-LAP[Ni2(l-asp)2(Pz)] (Pz = pyrazine) crystals as seeds. Utilizing the principle of reticular chemistry, here, we introduced the active amino side group into the Ni-LAP frameworks by replacing the pillar-layered ligand Pz with Pz -NH2 while maintaining the original Ni-LAP small pore size, and the amino side group induced a "steric hindrance" effect and the physical adsorption affinity, which synergistically delayed CO2 penetration. It was found that the preferential (111) orientation Ni-LAP-NH2 membrane (Z10) exhibited a high H2/CO2 separation performance with a separation factor of 41.7 and H2 permeance of 9.08 × 10-8 mol·m-2·s-1·Pa-1 under optimal conditions. These MOF materials demonstrated potential for industrial H2 purification due to their tunable pore structure and remarkable stability. Moreover, this strategy offers an effective approach to tailoring pillar-layered MOF membranes with targeted molecular sieving ability.
Read full abstract