Surcharge preloading is a suitable foundation treatment for high-speed railways in soft soil regions. As a temporary preload on the foundation, the surcharge load must be removed before track construction. In this process, rebound deformation of the foundation and variation in the pore-water pressure have been widely observed. These phenomena significantly influence the further evolution process of foundation consolidation. Although Biot’s consolidation theory is suitable for unloading-induced soil consolidation, the conventional Laplace transform method for solving Biot’s equations entails a time-consuming procedure and cannot reflect the time-dependent characteristics of the preloading and unloading process. To address these issues, a time difference method is proposed in this work. The ordinary differential equation in the transformation domain is obtained using the backward two-step difference method, and a physical analytical solution of the plane strain problem of overloaded subgrade is obtained via the Fourier inverse transform method. The proposed solution is validated through a comparison with existing literature data and actual engineering practices. Finally, based on this calculation method, the influence of the surcharge preloading amount, loading time, and soil properties on pore-water pressure dissipation and distribution after surcharge preloading removal is investigated.