Chymotrypsin C is a bifunctional secretory-type serine protease in pancreas; besides proteolytical activity, it also exhibits a calcium-decreasing activity in serum. In this study, we purified activated chymotrypsin C from porcine pancreas, and identified its three active forms. Active chymotrypsin C was found to be different in the length of its 13-residue activation peptide due to carboxydipeptidase (present in the pancreas) degradation or autolysis of the activated chymotrypsin C itself, resulting in the removal of several C-terminus residues from the activation peptide. After limited chymotrypsin C cleavage with endopeptidase Lys C, several purified peptides were partially sequenced, and the entire cDNA sequence for porcine chymotrypsin C was cloned. Recombinant chymotrypsinogen C was successfully expressed in Escherichia coli cells as inclusion bodies. After refolding and activation with trypsin, the comparison of the recombinant chymotrypsin C with the natural form showed that their proteolytic and calcium-decreasing activities were at the same level. The successful expression of chymotrypsin C gene paves the way to further mutagenic structure-function studies.
Read full abstract