The traditional ways of measuring global sustainable development and economic development schemes and their progress suffer from a number of serious shortcomings. Remote sensing and specifically nighttime light has become a popular supplement to official statistics by providing an objective measure of human settlement that can be used as a proxy for population and economic development measures. With the increased availability and use of the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and data in social science, it has played an important role in data collection, including measuring human development and economic growth. Numerous studies are using nighttime light data to analyze dynamic regions such as expansions of urban areas and rapid industrialization often highlight the problem of saturation in urban centers with high light intensity. However, the quality of nighttime light data and its appropriateness for analyzing areas and regions with low and fluctuating levels of light have rarely been questioned or studied. This study examines the accuracy of DMSP-OLS and VIIRS-DNB by analyzing 147 communities in Burkina Faso to provide insights about problems related to the study of areas with a low intensity of nighttime light during the studied period from 1992 to 2012. It found that up to 57% of the communities studied were undetectable throughout the period, and only 9% of communities studied had a 100% detection rate. Unsurprisingly, the result provides evidence that detection rates in both datasets are particularly low (3%) for settlements with 0–9999 inhabitants, as well as for larger settlements with population of 10,000–24,999 (28%). Cross-checking with VIIRS-DNB for the year 2012 shows similar results. These findings suggest that careful consideration must be given to the use of nighttime light data in research and global comparisons to monitor the progress of the United Nation’s Sustainable Development Goals, especially when including developing countries with areas containing low electrification rates and low population density.
Read full abstract