BackgroundAedes mosquitoes are important invasive species contributing to the spread of chikungunya, dengue fever, yellow fever, zika virus, and other dangerous vector-borne diseases. Aedes albopictus is native to southeast Asia, with rapid expansion due to human activity, showing a wide distribution in the Korean peninsula. Aedes flavopictus is considered to be native to East Asia, with a broad distribution in the region, including the Korean peninsula. A better understanding of the genetic diversity of these species is critical for establishing strategies for disease prevention and vector control.MethodsWe obtained DNA from 148 specimens of Ae. albopictus and 166 specimens of Ae. flavopictus in Korea, and amplified two mitochondrial genes (COI and ND5) to compare the genetic diversity and structure of the two species.ResultsWe obtained a 658-bp sequence of COI and a 423-bp sequence of ND5 from both mosquito species. We found low diversity and a nonsignificant population genetic structure in Ae. albopictus, and high diversity and a nonsignificant structure in Ae. flavopictus for these two mitochondrial genes. Aedes albopictus had fewer haplotypes with respect to the number of individuals, and a slight mismatch distribution was confirmed. By contrast, Ae. flavopictus had a large number of haplotypes compared with the number of individuals, and a large unimodal-type mismatch distribution was confirmed. Although the genetic structure of both species was nonsignificant, Ae. flavopictus exhibited higher genetic diversity than Ae. albopictus.ConclusionsAedes albopictus appears to be an introduced species, whereas Ae. flavopictus is endemic to the Korean peninsula, and the difference in genetic diversity between the two species is related to their adaptability and introduction history. Further studies on the genetic structure and diversity of these mosquitos will provide useful data for vector control.