<p style='text-indent:20px;'>In this paper, we study the null controllability of a nonlinear age, space and two-sex structured population dynamics model. This model is such that the nonlinearity and the couplage are at birth level. We consider a population with males and females and we are dealing with two cases of null controllability problems.</p><p style='text-indent:20px;'>The first problem is related to the total extinction, which means that, we estimate a time <inline-formula><tex-math id="M1">\begin{document}$ T $\end{document}</tex-math></inline-formula> to bring the male and female subpopulation density to zero. The second case concerns null controllability of male or female subpopulation. Since the absence of males or females in the population stops births; so, if we have the total extinction of the females at time <inline-formula><tex-math id="M2">\begin{document}$ T, $\end{document}</tex-math></inline-formula> and if <inline-formula><tex-math id="M3">\begin{document}$ A $\end{document}</tex-math></inline-formula> is the life span of the individuals, at time <inline-formula><tex-math id="M4">\begin{document}$ T+A $\end{document}</tex-math></inline-formula> one will get certainly the total extinction of the population. Our method uses first an observability inequality related to the adjoint of an auxiliary system, a null controllability of the linear auxiliary system, and after the Schauder's fixed point theorem.</p>